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Abstract

For a wide class of stochastically excited multistable
systems the Melnikov necessary condition for chaos
contains information on the effectiveness of the vari-
ous frequency components of the excitation in induc-
ing exits from a potential well. This information can be
used to develop an open-loop control procedure aimed
at reducing the system’s exit rate. The Melnikov ap-
proach is based on a first-order approximation and is in
principle applicable only for small perturbations. Nev-
ertheless, results of simulations show that it is valid
qualitatively even if the excitations are relatively large.
We test the effectiveness of the proposed control pro-
cedure, and briefly review the use of the phase space
flux factor to assess or design the control systems.

1 Introduction

For stochastically excited planar systems the stochastic
Melnikov approach can provide a simple and effective
basis for open-loop control aimed at reducing the rate
of exit from a safe region of the phase space [1]-[8].
We briefly review relevant results of Melnikov theory,
which in principle is applicable only for asymptotically
small perturbations, and present results of simulations
which show that in fact it is valid qualitatively even if
the perturbations are relatively large. We describe the
proposed control procedure and test its effectiveness by
numerical simulations. We also review the use of the
flux factor as ah analytical tool that can help to assess
or design Melnikov-based controls.

2 Melnikov necessary condition for exits from
a potential well

‘We consider systems described by the equation
. dv .
P=-—t e(oG(t) - pz] , (1)
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where 0 < e <€ 1,0 > 0, 3> 0 and V(z) is a multiple-
well potential. For the case of quasiperiodic excitation

N
G(t) = E In COS(U"t + ¢n) ’ (2)

n=1

the Melnikov necessary condition for chaos is that the
system’s Melnikov function has simple zeros, i.e.,

N
—Bk+027ns(wn) >0 (3)

n=1

where the constant & and the Melnikov scale factor
S(w) depend both on the potential V(z) through the
unperturbed system’s homoclinic or heteroclinic orbits
[9]. For a multistable system, Eq. (3) is also a neces-
sary condition for exits from a well. From Eq. (3) it
follows that the contribution to the promotion of chaos
— and exits — by the component with amplitude v, de-
pends upon S(wn), i.e., it is larger if S{wy) is large,
and conversely.

If G(t) is a stochastic process with unit variance and
spectral density 2n¥g(w), then over any finite time in-
terval, however large, it can be approximated as closely
as desired by the sum [10]

N
GN(t) = Z Yn cos{wnt + ¢n) (4}

n=1

where 7, = /27¥(wn)Aw, Aw = w /N, wy, = nlw,
w, is the cutoff frequency, ¢, is a random variable uni-
formly distributed in [0, 2], and N is finite. The Mel-
nikov necessary condition for chaos can then be approx-
imated by an expression with the same form as Eq. (3).
It follows that the process G(t) is more effective in pro-
moting exits if its spectral density is concentrated at or
near the frequency of the Melnikov scale factor’s peak.
However, we need to check whether this remains true
if € is relatively large.
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where 0 < e € 1,0 >0, 3> 0 and V(z) is a multiple-
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N
G(t) = Y 7 cos(wnt + 65) , (2)

n=1
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N
~Bk+0d 1S(wa) >0 (3)

n=1
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Gr(t) = 3" 7n cosfwnt + ¢n) (4
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3 Dependence of exit rate upon &equency of
added excitation

For the sake of transparency we consider the simple
case oG(t) = v coswit + y2coswqt. We refer to the
first and second term of this sum as the basic and
added excitation, respectively. We fix 7; and w; and,
for each of three different amplitudes a2, vary the fre-
quency w;. We assume' the Duffing-Holmes poten-
tial V(z) = ~az?/2 + bz%/4 in which a = b = 0.5,
e = 0.045, ey; = 0.114558, and the three values

= 0.0005, y2 = 0.004, and v = 0.032. In the
absence of the added excitation 73 coe w»t, simulations
yield a mean exit time 7, & 60. The mean exit time due
to the effect of both the basic and added excitations is
shown in Fig. 1 as a function of the frequency wz. Note
that, even for relatively large total excitation, the Mel-
nikov scale factor S(w) = 2xwsech(ww/v/2) provides
qualitative information on the dependence of the mean
exit time upon the frequency of the added excitation:
for frequencies w, close to (far from) the frequency of
S(w)’s peak the added excitation’s effectiveness in pro-
moting exits is strongest (weakest).

4 System stabilization by open - loop control:
numerical simulations

For any given system, increasing the mean exit time 7,
by using an open-loop control approach can be achieved
by adding to the excitation ¢cG(t) an appropriately
chosen control force ¢0.G.(t), where o, has the same
sign as o and |o.] < |o|. A trivial choice would be
G.(t) = —G(t). The ratio between the average powers
of the control force and the excitation force is then Q =
o2/0%. We seek to use information contained in the
Melnikov scale factor S(w) to obtain control forces that
would achieve mean exit time increases comparable to
those achieved by the trivial control force, but more
efficiently, that is, with a smaller power ratio Q .

To this end, instead of using the process G.(t) = G(t),
we can apply a control force obtained from G(t) by fil-
tering out from this process the ineffective components,
i.e., the components with frequencies for which S(w) is
small. In theory we can effect such filtering through
multiplication of the spectral density of G(t) by a
unit rectangular function U(w1,w32) = H(wy) — H(wa),
where [w1,w?] is the frequency interval outside which
the excitation components are ineffective, and H is the
Heaviside function. In practice the control force has a
time lag { with respect to the excitation, and practical
filter characteristics differ from those associated with
the unit rectangular function. Nevertheless the effect
of filtering out ineffective components is of interest, and
we show results of simulations illustrating that effect.

We considered Eq. (1) with the Duffing-Holmes po-

tential in which @ = & = 1 and parameters ¢ = 0.1,
B = 0.45. We assumed 2x¥o(w) = 2x/5for 0 <w <5
and 2x¥o(w) = O otherwise. We first estimated the
mean exit rate for the uncontrolled system. We then es-
timated mean exit rates for the system with four types
of control force. The first type, denoted (a), is the triv-
ial control force modified by introducing a time lag,
—eo,G(t — 1). The second type, denoted (b), is ob-
tained by passing the process —¢o.G(t — ) through an
ideal filter that suppresses the ineflective components
and leaves the other components unchanged. The third
type, denoted (c), is obtained by passing ~eo.G(t —- 1)
through the filter with the impulse response function
of Fig. 2 (A = 0.1, B = 2.25). The fourth type,
denoted (d), was obtained by passing —eo.G(t — 1)
through the same filter as force (c), and then suppress-
ing from the output the ineffective components while
leaving the other components unchanged. The time lag
was [ = 0.1 in all cases. Figure 3 shows the spectrum of
G(1). It is seen that the Melnikov scale factor largely
suppresses components with frequencies outside the in-
terval [w;,ws;], where w; = 0.2 and w2 = 2.0. These
values were used to define the ineffective components.
The ratios o./o were chosen so that the average power
be equal for forces (a} and (b), and for forces (c) and
(d). For forces (b) and (d) we assumed o./o = 0.5. The
equal average power criterion yielded 9./0 = 0.292 for
force (a) and 7./ = 0.347 for force {(c¢). The power
ratios are then Q = 0.2922 = 0.085 for forces (a) and
(b), and Q = 0.108 for forces (c) and (d). -

The results of the simulations are shown in Fig. 4.
Control force (a) (i.e., the trivial control with time lag
1 and Q = 0.085) reduces the exit rate by about 30 per-
cent. For the same power ratio, control force (b), which
uses information inherent in the Melnikov scale factor,
performs significantly better, especially for smaller ex-
citations, which are of interest in situations involving
exits from a safe state. Similarly, for equal power ratios,
force (d), obtained by eliminating the ineffective fre-
quency components of force (c), is more effective than
force (c).

It can be easily seen that the proposed open-loop con-
trol procedure is more effective for excitations with
large ratio between the power of the ineffective compo-
nents and the total excitation power. This is illustrated
by examples in [6]. However, suppression of ineffective
spectral components is only one requirement for an ef-
fective control filter. A second requirement is that the
excitation be countered by control force components
that have not only appropriate frequency content, but
appropriate phase angles as well. An effective filter
should satisfy both requirements. In the next section
we discuss the use of the phase space flux factor as a
tool for assessing or designing filters used to obtain the
control force.
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- 5 Flux-factor based open-loop control

To first order, the phase space flux factor is propor-
tional to the time average of the area bounded by the
time axis and the positive ordinate of the Melnikov pro-
cess in any given time slice [2]). We denote by yM(t)
and 9. M.(t) the zero-mean fluctuating parts of the
Melnikov processes induced by the excitation eyG(t)
and the control force €y.G.(t), respectively,. The flux
factor is defined as

= E[(yM(t) — v M.(t) - k)+] . (5)

Define the random variable aZ(t) = yM(t) — v.M.(t),
where Z(¢) has zero mean, unit variance, and cumula-
tive distribution function Fz(z). The variance of the
process aZ(t) is

- o = Var[yM(t) — 7. Mc(t)]
Yol + 12k, — 2v1.aMM. (6

t

where a}e, af, and apmuy, are the variances and the
covariance of the processes M(t) and M,(t). The flux
factor can be written

® = E{(aZ - k)t

/ ” (az - K)dFz(2)
kja

a/w [1—=Fz(2)ldz . (7)
kla

The last result of Eq. (7) is obtained by integrating by
parts the integral [ zdFz(z), and is written as

& = ku(a/k) ,u(z) = = /k ::[1 — Fz(:)}dz. (8)

In the particular case of Gaussian excitation and con-
trol force, Z is also Gaussian. It can be verified [4]
that, for « = 0, ® = 0, and if the probability density
function fz(z) decreases faster than z~3 as z — oo,
d®/da = 0 and d?®/d?a = 0. For a > 0, d®/da > 0
and d?®/da > 0. Since & is a monotonically decreas-
ing function of a the flux factor is smaller for the con-
trolled system than for the system with no control force
(7. = 0) if and only if a < yaa or, from Eq. (6),

7e/7 < 20MM.[0h, - (9)
The optimal ratio v./v - the ratio which, given M(?)
and M, (t), minimizes o? - is

Yeopt/Y = GMM./O'}(, . (10)

The flux factor as reduced by the action of the control
force with optimal strength e op¢ i8

&, , = ku(Ryanm,/k) ,R= vV 1-p3m, (11)

where 0 < parar, = apmm,./(apman,) < 1is the control
force’s flux reduction index. The smaller the index R,

the more effective is the control force. Approximate
expressions for R as functions of the system potential
V(z), the spectral density of the excitation, the time
lag 1, and the filter gain and phase, were derived from
Eq. (12) in [4]. These expressions can be used for the
assessment of any given filter design.

Let F(t) denote the process obtained by passing the
excitation process through a measurement filter and a
lag filter that causes the output of the measurement
filter to experience a lag I . Given the system’s poten-
tial V(z) (or, equivalently, the system’s Melnikov scale
factor), passing F(t) through a control filter yields a
control force that can be optimized in the sense that
it will achieve the control objective of producing the
smallest possible flux factor. If the available control
power exceeds a certain threshold the optimal control
filter is 8 Wiener filter; otherwise, a non-Wiener solu-
tion is applicable [5].

6 Conclusions

A Melnikov-based open-loop approach to the control
of a wide class of nonlinear stochastic systems was de-
scribed. Exploratory numerical simulations and inves-
tigations on the reduction of the flux factor by a con-
trol force indicate that the information contained in the
Melnikov scale factor can help achieve a relatively effi-
cient stabilization of the system. The degree to which
this is the case depends on the system (i.e., on its Mel-
nikov scale factor), the excitation spectrum, and the
design of the control filter.
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Figure 1 Dependence of mean escape time 7, on fre-
quency of added excitation for amplitudes: (a) y; =
0.0005, (b) y2 = 0.004, (c) 2 = 0.032. Solid line: Mel-
nikov scale factor.
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Figure 2 Impulse response function of two-parameter
filter with initial response and recoil.
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Figure 3 Speciral density of excitation (solid line) and
square of Melnikov scale factor (interrupted line).
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Figure 4 (i) Escape rate for uncontrolled system; (ii)
ratio ny /ng between escape rates of system with control
forces a, b, ¢, d and escape rate of uncontrolled system.
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